If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3h^2-137=0
a = 3; b = 0; c = -137;
Δ = b2-4ac
Δ = 02-4·3·(-137)
Δ = 1644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1644}=\sqrt{4*411}=\sqrt{4}*\sqrt{411}=2\sqrt{411}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{411}}{2*3}=\frac{0-2\sqrt{411}}{6} =-\frac{2\sqrt{411}}{6} =-\frac{\sqrt{411}}{3} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{411}}{2*3}=\frac{0+2\sqrt{411}}{6} =\frac{2\sqrt{411}}{6} =\frac{\sqrt{411}}{3} $
| 5/37x+10/37=10/37 | | x/5-36=30+4 | | 14-2(3x+6)=3x-(2x-20) | | 14-2(3x+6)=3x-(2x-20 | | 4x+13-6x=6+2(-2x*2 | | x-12=10+3 | | -6|x|=-30 | | X+5/x-14=2/3 | | 2(n+-4)=0 | | -2(s-18)=0 | | Y=2/7x+4 | | y+1/2=2 | | 2(p+2)-7=3 | | 4(x+5)=6x+6 | | 5(2x–1)–2=13 | | |x|+3=12 | | |6x+3|=11 | | 11h-10h-2=-20 | | b/6-5=-4 | | 2/3-(3x-7/6)=(4*6)/(3*4) | | 8r-4r-4=12 | | 7p^2+26p+15=0 | | 2/3-(3x-7/6)=24/12 | | 2x+11=5+14 | | 21-x=21-13 | | 15=3(s+2) | | 1b-5-5b=-3b-4 | | 12s+-18s+9s=-9 | | 2(y-15)+20=18 | | 9=3(y+2) | | 5x-56+14=180 | | 5=6/w-3 |